
INTRODUCTION TO BunG

LEI ZHANG

1. Stacks and Algebraic Stacks

A sheaf in, say fpqc topology on Aff, is a contra-variant functor

F : (Aff)→ (Sets)

satisfying some gluing conditions. A stack is just a sheaf but taking values in the 2-category of
categories instead of in the the 1-category of sets. This means that to define stacks we have to
reformulate the sheaf axioms in the 2-category setting.

First we take care of morphisms: For any affine scheme X and any two objects A, B ∈ F(X)
we get a functor

FA,B : (Aff/X)→ (Sets)
which sends any morphism f ∗ : Y → X to the set HomF(Y)( f ∗A, f ∗B). The sheaf FA,B has to be a
sheaf on the site (Aff/X). A 2-functor satisfying this property is morally a ”presheaf”.

For objects: Let X be an object in Aff, and let {Ui → X}i∈I be a covering of X. If Ai ∈ F (Ui)
are objects and

φi j : Ai|Ui×XU j → A j|Ui×XU j

are morphisms in F (Ui ×X U j) which are compatible in a natural way (the cocycle condition),
then there exists A ∈ F (X) whose restriction to Ui are Ai and whose restrictions to Ui ×X U j

induces the identifications φi j. A ”presheaf” with this property is a stack.

Example 1.1. The 2-functor F sending any scheme X to the category of quasi-coherent sheaves
on X is a stack in the fpqc topology.

A category is called a groupoid if all its morphisms are isomorphisms. A set is a groupoid in
which all the arrows are identity morphisms.

Definition 1.2. An algebraic stack is a 2-functor

X : (Aff)→ (Groupoids) ⊆ (Categories)

which is an fppf stack with the following properties:

(1) The diagonal X
∆
−→ X × X is representable.

(2) There is a scheme X and a smooth surjective morphism X � X.
Here the scheme X is called an atlas of X and the map X � X is called a presentation.

Example 1.3. (1) A scheme is an algebraic stack.
(2) The stack of quasi-coherent sheaves is not an algebraic stack.
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(3) Let G be an affine group scheme over k. Define BkG to be the 2-functor sending any
k-scheme X to the category of G-torsors over X. This 2-functor is clearly a stack. It is an
algebraic stack iff G is linerly algebraic.

Definition 1.4. A morphism f : X → Y of algebraic stacks is called locally of finite type (resp.
locally of finite presentation) if for any presentation Y � Y the fibred product X ×Y Y has an
atlas which is locally of finite type (resp. locally of finite presentation) over Y .

Definition 1.5. An algebraic stack X is called quasi-compact if there is an atlas X which is
quasi-compact.

Definition 1.6. A morphism f : X → Y of algebraic stacks is called quasi-compact if for any
map V � Y with V an affine scheme the fibred product X ×Y V is quasi-compact.

Definition 1.7. A morphism f : X → Y of algebraic stacks is called of finite type (resp. of finite
presentation) if it is locally of finite type (resp. locally of finite presentation) and quasi-compact.

Definition 1.8. Let X be an algebraic stack. We set |X| the class∐
K is a field

ob(X(K))

modulo the following equivalent relation: Two elements x ∈ ob(X(K1)) and y ∈ ob(X(K2)) are
equivalent iff there is a field K3 which contains both K1 and K2 and the restriction of x, y to K3

are isomorphic.
Using 2-Yoneda lemma one can rephrase |X| to be the set of morphisms of the form Spec(K)→

X modulo the equivalence relation that Spec(K1)→ X is Spec(K2)→ X iff there are morphisms
Spec(K3) → Spec(K1) and Spec(K3) → Spec(K2) whose compositions with the morphisms we
started with are equal.

For any presentation X � X there is a clear map of sets |X| → |X| which is surjective. We
give |X| the quotient topology, i.e. the quotient of |X|. The topology is easily checked to be
independent of the presentation.

2. The Hom-stack and BunG

Let S be a base scheme, and let X,Y be two fibered categories over S . We can define a
2-functor

HomS (X,Y) : (Aff/S ) −→ (Groupoids)
by sending any morphism S ′ → S to the category of functors HomS ′(X×S S ′,Y×S S ′). One can
show easily thatHomS (X,Y) is a stack as soon as Y is a stack.

Theorem 2.1. (Hall and Rydh) Let Y → S be a morphism of algebraic stacks that is locally
of finite presentation, quasi-separated, and has affine stabilizers, with quasi-finite and separated
diagonal. Let X → S be a morphism of algebraic stacks that is proper, flat, and of finite presen-
tation. Then the S -stack

T 7→ HomT (X ×S T,Y ×S T )
is algebraic, locally of finite presentation, quasi-separated, with affine diagonal over S .

https://arxiv.org/pdf/1405.7680.pdf
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Definition 2.2. Let G be an affine group scheme over S , and let X be an algebraic stack over
Aff/S . We define

BunG(X) := HomS (X,BG)

This is a stack over Aff/S . If G = GLr, then we write Bunr(X) for BunG(X).

3. The algebraicity of Bunr

In this section we are going to show the following theorem:

Theorem 3.1. Let X be a projective flat scheme over S with S Noetherian. Let G be a closed
subgroup scheme of a general linear algebraic group GLn and the fppf-quotient GLn/G is a
quasi-projective scheme over S . Then the stack BunG(X) is an algebraic stack locally of finite
type over S .

The theorem follows from Theorem 2.1. Here we will give a different but complete proof.

Lemma 3.2. Let Y1 → Y2 be a quasi-projective morphism of fibered categories (e.g. algebraic
stacks), and let X be a proper flat scheme of finite presentation. Then the natural map

Hom(X,Y1)→ Hom(X,Y2)

is representable by schemes which are locally of finite type.

Proof. Let S be a scheme, and let S → Hom(X,Y2) be a morphism. Then one sees easily that
the fibered product

S ×Hom(X,Y2) Hom(X,Y1)

is equal to the following 2-functor

(Aff/S ) −→ (Groupoids)

(S ′ → S ) 7→ HomXS (XS ′ ,Y1 ×Y2 XS )

Thus the 2-functor over (Aff/S ) is actually the space of sections of the projection

pr2 : Y1 ×Y2 XS → XS

which is an open subscheme of the Hilbert scheme Hilb(Y1×Y2 XS )/S [FGA, pp. 195-13 and pp.
221-19]. �

Corollary 3.3. If X be a proper flat scheme of finite presentation, then the stack Bunr(X) has a
diagonal which is represented by locally of finite type schemes.

Proof. The corollary follows immediately from 3.2, and the fact that Bunr(X) ×S Bunr(X) =

BunGLr×S GLr (X) and that BGLr → BGLr ×S BGLr is representable by GLr. �

Proposition 3.4. Let X be a projective flat scheme over S with S Noetherian. There are open
sub-functorsUn ↪→ Bunr(X), and schemes Yn locally of finite type with a smooth surjective map
Yn � Un. Moreover theseUn cover Bunr(X).
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Proof. Let’s define Un ⊆ Bunr(X) to be the subfunctor which sends any morphism T → S to
category of rank r vector bundles E on XT with the property that p∗p∗E(n) → E(n) is surjective
and Rs p∗(E(n)) = 0 for all s > 0, where p denotes the projection p : XT → T . In this way
we really defined a 2-functor: By [EGA III-1, 2.2.2, pp. 100] Hq(E(n)|XK ) = 0 for q � 0 for all
points Spec(K)→ T . Using descending induction on q we see that E(n) satisfies cohomology and
base change at all degree q ≥ 0. To see thatUn is open we just have to show that our restriction
on the vector bundle E is an open condition, i.e. if t ∈ T is a point for which p∗p∗E(n) → E(n)
is surjective and Rs p∗(E(n)) = 0 for all s > 0, where p : Xt → Spec(κ(t)) is the projection,
then there is an open neighborhood U of t such that for all points in U the condition is satisfied.
The condition Rs p∗(E(n)) = 0 follows from semi-continuity and p∗p∗E(n) � E(n) then follows
from cohomology and base change. Now the fact that {Un}n∈N covers Bunr(X) follows from the
following theorem:

Theorem 3.5. [EGA III-1, 2.2.1, pp. 100] Soient Y un préschéma noethérien, f : X → Y un
morphisme propre, L un OX-Module inversible ample pour f . Pour tout OX-Module F , posons
F (n) = F ⊗OX L

⊗n pour tout n ∈ Z. Alors, pour tout OX-Module cohérent F :
(1) Les Rq f∗(F ) sont des OY-Modules cohérents.
(2) Il existe un entier N tel que pour n ≥ N, on ait Rq f∗(F (n)) = 0 pour tout q > 0.
(3) Il existe un entier N tel que pour n ≥ N, l’homomorphisme canonique f ∗( f∗(F (n))) →
F (n) soit surjectif.

Set Un,d the open substack of Un consisting of vector bundles E on XT whose pushforward
p∗E(n) is a vector bundle of rank d ∈ N. Clearly we have

⋃
d∈NUn,d = Un. Set Zn,d be the

2-functor sending any T → S to the category of pairs (E, φ), where E is in Un,d(T ), φ : O⊕d
XT
�

E(n). The category is clearly equivalent to a set because of the surjectivity. Thus Zn,d is a 1-
functor.

Lemma 3.6. The 1-functor Zn,d is representable by an open subscheme of the Quot-scheme.
Therefore Zn,d is locally of finite type.

Proof. Let E be an OX-module of finite presentation. Consider the following two 1-functors:

QuotE/X/S (T ) := {F ∈ Mod(OXT ) of finite presentation flat over T with a surjection E � F}

FE/X/S (T ) := {F ∈ Mod(OXT ) of finite presentation flat over XT with a surjection E � F}

We claim that FE/X/S is an open substack of QuotE/X/S . Now suppose that F ∈ QuotE/X/S (T ) and
that at a point t : Spec(K) → T the pullback of F to XK is in FE/X/S (K). One has to show that
there exists U containing t such that F|U ∈ FE/X/S (U). Let A ⊆ XT be the subset of points on
which F is not flat. Now by [EGA IV-3, 11.3.10] U := T \ p(A) is precisely the open which we
are looking for. Finally one checks readily that Zn,d is an open subscheme of FOX(−n)⊕d/X/S . �

Now we look at Yn,d the open subscheme of Zn,d consisting of pairs whose map φ induces an
isomorphism ϕ : O⊕d

T → p∗E(n). This is open because clearly Coker(ϕ) = 0 is an open condition,
so we may assume that ϕ is surjective. In this case Ker(φ) = 0 is an open condition. Thus the
condition that ϕ is an isomorphism is an open condition.
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Finally we consider the following map Un,d → BGLd which sends an object E ∈ Un,d(T ) to
p∗E(n). One checks readily that the following diagram

Yn,d
//

��

Spec(k)

��
Un,d

// BGLd

is Cartesian. In fact it almost follows from the definition of Yn,d. The only thing which one
has to take care of is that when ϕ : O⊕d

T → p∗E(n) is an isomorphism the corresponding map
φ : O⊕d

XT
� E(n) is surjective. This is due to the fact that the adjunction p∗p∗E(n) → E(n) is

surjective by the construction ofUn,d. Thus we obtain a smooth atlas for eachUn,d �

Proof of Theorem 3.1. It follows from 3.3 and 3.4 that Bunr is an algebraic stack. Now applying
3.2 to Y1 = BG and Y2 = BGLn we get a representable morphism BunG → Bunn. Thus the
presentation of Bunn translates to a presentation of BunG. �

4. Bunr is not of finite type

Proposition 4.1. Let X be the projective space over a field k. There is no surjection from a
scheme of finite type to Bunr(X) for r ≥ 2.

Proof. Let f : Y → Bunr(X) be a surjective map with Y of fintie type, and let yn be the points
corresponding to O(n) ⊕ O(−n) ⊕ O⊕r−2. The map f corresponds to a vector bundle E on XY . By
the theorem of Serre there exists n � 0 such that p∗p∗E(n) → E(n) is surjective. Now left yn+1

to a 2-commutative diagram
Y

f
��

Spec(K)
yn+1 //

hn+1

88

Bun2(X)

The lift hn+1 tells us that E pullbacks to O(n + 1) ⊕ O(−n − 1) ⊕ O⊕r−2 and that

(O(n + 1) ⊕ O(−n − 1) ⊕ O⊕r−2)(n) = O(2n + 1) ⊕ O(−1) ⊕ O⊕r−2(n)

is generated by global sections. But in fact this is false. �
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