INTRODUCTION TO Bun_G

LEI ZHANG

1. STACKS AND ALGEBRAIC STACKS

A sheaf in, say fpqc topology on Aff, is a contra-variant functor

$$\mathcal{F}: (Aff) \to (Sets)$$

satisfying some gluing conditions. A stack is just a sheaf but taking values in the 2-category of categories instead of in the the 1-category of sets. This means that to define stacks we have to reformulate the sheaf axioms in the 2-category setting.

First we take care of morphisms: For any affine scheme X and any two objects $A, B \in F(X)$ we get a functor

$$\mathcal{F}_{A,B}$$
: (Aff/X) \rightarrow (Sets)

which sends any morphism $f^* : Y \to X$ to the set $\operatorname{Hom}_{F(Y)}(f^*A, f^*B)$. The sheaf $\mathcal{F}_{A,B}$ has to be a sheaf on the site (Aff/X). A 2-functor satisfying this property is morally a "presheaf".

For objects: Let X be an object in Aff, and let $\{U_i \to X\}_{i \in I}$ be a covering of X. If $A_i \in \mathcal{F}(U_i)$ are objects and

$$\phi_{ij}: A_i|_{U_i \times_X U_j} \to A_j|_{U_i \times_X U_j}$$

are morphisms in $\mathcal{F}(U_i \times_X U_j)$ which are compatible in a natural way (the cocycle condition), then there exists $A \in \mathcal{F}(X)$ whose restriction to U_i are A_i and whose restrictions to $U_i \times_X U_j$ induces the identifications ϕ_{ij} . A "presheaf" with this property is a stack.

Example 1.1. The 2-functor \mathcal{F} sending any scheme *X* to the category of quasi-coherent sheaves on *X* is a stack in the fpqc topology.

A category is called a groupoid if all its morphisms are isomorphisms. A set is a groupoid in which all the arrows are identity morphisms.

Definition 1.2. An algebraic stack is a 2-functor

 $X : (Aff) \rightarrow (Groupoids) \subseteq (Categories)$

which is an fppf stack with the following properties:

- (1) The diagonal $X \xrightarrow{\Delta} X \times X$ is representable.
- (2) There is a scheme X and a smooth surjective morphism $X \twoheadrightarrow X$.

Here the scheme X is called an atlas of X and the map $X \rightarrow X$ is called a presentation.

Example 1.3. (1) A scheme is an algebraic stack.

(2) The stack of quasi-coherent sheaves is not an algebraic stack.

LEI ZHANG

(3) Let G be an affine group scheme over k. Define $\mathcal{B}_k G$ to be the 2-functor sending any k-scheme X to the category of G-torsors over X. This 2-functor is clearly a stack. It is an algebraic stack iff G is linerly algebraic.

Definition 1.4. A morphism $f : X \to \mathcal{Y}$ of algebraic stacks is called locally of finite type (resp. locally of finite presentation) if for any presentation $Y \to \mathcal{Y}$ the fibred product $X \times_{\mathcal{Y}} Y$ has an atlas which is locally of finite type (resp. locally of finite presentation) over *Y*.

Definition 1.5. An algebraic stack X is called quasi-compact if there is an atlas X which is quasi-compact.

Definition 1.6. A morphism $f : X \to \mathcal{Y}$ of algebraic stacks is called quasi-compact if for any map $V \to \mathcal{Y}$ with V an affine scheme the fibred product $X \times_{\mathcal{Y}} V$ is quasi-compact.

Definition 1.7. A morphism $f : X \to \mathcal{Y}$ of algebraic stacks is called of finite type (resp. of finite presentation) if it is locally of finite type (resp. locally of finite presentation) and quasi-compact.

Definition 1.8. Let X be an algebraic stack. We set |X| the class

$$\coprod_{K \text{ is a field}} \operatorname{ob}(\mathcal{X}(K))$$

modulo the following equivalent relation: Two elements $x \in ob(\mathcal{X}(K_1))$ and $y \in ob(\mathcal{X}(K_2))$ are equivalent iff there is a field K_3 which contains both K_1 and K_2 and the restriction of x, y to K_3 are isomorphic.

Using 2-Yoneda lemma one can rephrase |X| to be the set of morphisms of the form $\text{Spec}(K) \to X$ modulo the equivalence relation that $\text{Spec}(K_1) \to X$ is $\text{Spec}(K_2) \to X$ iff there are morphisms $\text{Spec}(K_3) \to \text{Spec}(K_1)$ and $\text{Spec}(K_3) \to \text{Spec}(K_2)$ whose compositions with the morphisms we started with are equal.

For any presentation $X \rightarrow X$ there is a clear map of sets $|X| \rightarrow |X|$ which is surjective. We give |X| the quotient topology, i.e. the quotient of |X|. The topology is easily checked to be independent of the presentation.

2. The Hom-stack and Bun_G

Let S be a base scheme, and let X, \mathcal{Y} be two fibered categories over S. We can define a 2-functor

$$\mathcal{H}om_{\mathcal{S}}(\mathcal{X}, \mathcal{Y}) \colon (Aff/S) \longrightarrow (Groupoids)$$

by sending any morphism $S' \to S$ to the category of functors $\operatorname{Hom}_{S'}(X \times_S S', \mathcal{Y} \times_S S')$. One can show easily that $\mathcal{H}om_S(X, \mathcal{Y})$ is a stack as soon as \mathcal{Y} is a stack.

Theorem 2.1. (Hall and Rydh) Let $\mathcal{Y} \to S$ be a morphism of algebraic stacks that is locally of finite presentation, quasi-separated, and has affine stabilizers, with quasi-finite and separated diagonal. Let $X \to S$ be a morphism of algebraic stacks that is proper, flat, and of finite presentation. Then the S-stack

$$T \mapsto \operatorname{Hom}_{T}(X \times_{S} T, \mathcal{Y} \times_{S} T)$$

is algebraic, locally of finite presentation, quasi-separated, with affine diagonal over S.

2

Definition 2.2. Let G be an affine group scheme over S, and let X be an algebraic stack over Aff/S. We define

$$\operatorname{Bun}_{G}(X) := \mathcal{H}\operatorname{om}_{S}(X, \mathcal{B}G)$$

This is a stack over Aff/S. If $G = GL_r$, then we write $Bun_r(X)$ for $Bun_G(X)$.

3. The Algebraicity of Bun_r

In this section we are going to show the following theorem:

Theorem 3.1. Let X be a projective flat scheme over S with S Noetherian. Let G be a closed subgroup scheme of a general linear algebraic group GL_n and the fppf-quotient GL_n/G is a quasi-projective scheme over S. Then the stack $Bun_G(X)$ is an algebraic stack locally of finite type over S.

The theorem follows from Theorem 2.1. Here we will give a different but complete proof.

Lemma 3.2. Let $\mathcal{Y}_1 \to \mathcal{Y}_2$ be a quasi-projective morphism of fibered categories (e.g. algebraic stacks), and let X be a proper flat scheme of finite presentation. Then the natural map

$$\mathcal{H}om(X, \mathcal{Y}_1) \to \mathcal{H}om(X, \mathcal{Y}_2)$$

is representable by schemes which are locally of finite type.

Proof. Let *S* be a scheme, and let $S \to \mathcal{H}om(X, \mathcal{Y}_2)$ be a morphism. Then one sees easily that the fibered product

$$S \times_{\mathcal{H}om(X,\mathcal{Y}_2)} \mathcal{H}om(X,\mathcal{Y}_1)$$

is equal to the following 2-functor

$$(Aff/S) \longrightarrow (Groupoids)$$

$$(S' \to S) \mapsto \operatorname{Hom}_{X_S}(X_{S'}, \mathcal{Y}_1 \times_{\mathcal{Y}_2} X_S)$$

Thus the 2-functor over (Aff/S) is actually the space of sections of the projection

$$\operatorname{pr}_2: \mathcal{Y}_1 \times_{\mathcal{Y}_2} X_S \to X_S$$

which is an open subscheme of the Hilbert scheme $\text{Hilb}_{(\mathcal{Y}_1 \times \mathcal{Y}_2 X_S)/S}$ [FGA, pp. 195-13 and pp. 221-19].

Corollary 3.3. If X be a proper flat scheme of finite presentation, then the stack $Bun_r(X)$ has a diagonal which is represented by locally of finite type schemes.

Proof. The corollary follows immediately from 3.2, and the fact that $\text{Bun}_r(X) \times_S \text{Bun}_r(X) = \text{Bun}_{GL_r \times_S GL_r}(X)$ and that $\mathcal{B}GL_r \to \mathcal{B}GL_r \times_S \mathcal{B}GL_r$ is representable by GL_r .

Proposition 3.4. Let X be a projective flat scheme over S with S Noetherian. There are open sub-functors $\mathcal{U}_n \hookrightarrow \operatorname{Bun}_r(X)$, and schemes Y_n locally of finite type with a smooth surjective map $Y_n \twoheadrightarrow \mathcal{U}_n$. Moreover these \mathcal{U}_n cover $\operatorname{Bun}_r(X)$.

Proof. Let's define $\mathcal{U}_n \subseteq \text{Bun}_r(X)$ to be the subfunctor which sends any morphism $T \to S$ to category of rank r vector bundles E on X_T with the property that $p^*p_*E(n) \to E(n)$ is surjective and $R^s p_*(E(n)) = 0$ for all s > 0, where p denotes the projection $p: X_T \to T$. In this way we really defined a 2-functor: By [EGA III-1, 2.2.2, pp. 100] $H^q(E(n)|_{X_K}) = 0$ for $q \gg 0$ for all points $\text{Spec}(K) \to T$. Using descending induction on q we see that E(n) satisfies cohomology and base change at all degree $q \ge 0$. To see that \mathcal{U}_n is open we just have to show that our restriction on the vector bundle E is an open condition, i.e. if $t \in T$ is a point for which $p^*p_*E(n) \to E(n)$ is surjective and $R^s p_*(E(n)) = 0$ for all s > 0, where $p: X_t \to \text{Spec}(\kappa(t))$ is the projection, then there is an open neighborhood U of t such that for all points in U the condition is satisfied. The condition $R^s p_*(E(n)) = 0$ follows from semi-continuity and $p^*p_*E(n) \twoheadrightarrow E(n)$ then follows from cohomology and base change. Now the fact that $\{\mathcal{U}_n\}_{n\in\mathbb{N}}$ covers $\text{Bun}_r(X)$ follows from the following theorem:

Theorem 3.5. [EGA III-1, 2.2.1, pp. 100] Soient Y un préschéma noethérien, $f : X \to Y$ un morphisme propre, \mathcal{L} un O_X -Module inversible ample pour f. Pour tout O_X -Module \mathcal{F} , posons $\mathcal{F}(n) = \mathcal{F} \otimes_{O_X} \mathcal{L}^{\otimes n}$ pour tout $n \in \mathbb{Z}$. Alors, pour tout O_X -Module cohérent \mathcal{F} :

- (1) Les $R^q f_*(\mathcal{F})$ sont des \mathcal{O}_Y -Modules cohérents.
- (2) Il existe un entier N tel que pour $n \ge N$, on ait $R^q f_*(\mathcal{F}(n)) = 0$ pour tout q > 0.
- (3) Il existe un entier N tel que pour $n \ge N$, l'homomorphisme canonique $f^*(f_*(\mathcal{F}(n))) \rightarrow \mathcal{F}(n)$ soit surjectif.

Set $\mathcal{U}_{n,d}$ the open substack of \mathcal{U}_n consisting of vector bundles E on X_T whose pushforward $p_*E(n)$ is a vector bundle of rank $d \in \mathbb{N}$. Clearly we have $\bigcup_{d \in \mathbb{N}} \mathcal{U}_{n,d} = \mathcal{U}_n$. Set $Z_{n,d}$ be the 2-functor sending any $T \to S$ to the category of pairs (E, ϕ) , where E is in $\mathcal{U}_{n,d}(T)$, $\phi : O_{X_T}^{\oplus d} \twoheadrightarrow E(n)$. The category is clearly equivalent to a set because of the surjectivity. Thus $Z_{n,d}$ is a 1-functor.

Lemma 3.6. The 1-functor $Z_{n,d}$ is representable by an open subscheme of the Quot-scheme. Therefore $Z_{n,d}$ is locally of finite type.

Proof. Let *E* be an O_X -module of finite presentation. Consider the following two 1-functors:

 $\operatorname{Quot}_{E/X/S}(T) := \{F \in \operatorname{Mod}(O_{X_T}) \text{ of finite presentation flat over } T \text{ with a surjection } E \twoheadrightarrow F\}$

 $\mathbb{F}_{E/X/S}(T) := \{F \in Mod(\mathcal{O}_{X_T}) \text{ of finite presentation flat over } X_T \text{ with a surjection } E \twoheadrightarrow F\}$

We claim that $\mathbb{F}_{E/X/S}$ is an open substack of $\operatorname{Quot}_{E/X/S}$. Now suppose that $F \in \operatorname{Quot}_{E/X/S}(T)$ and that at a point $t : \operatorname{Spec}(K) \to T$ the pullback of F to X_K is in $\mathbb{F}_{E/X/S}(K)$. One has to show that there exists U containing t such that $F|_U \in \mathbb{F}_{E/X/S}(U)$. Let $A \subseteq X_T$ be the subset of points on which F is not flat. Now by [EGA IV-3, 11.3.10] $U := T \setminus p(A)$ is precisely the open which we are looking for. Finally one checks readily that $Z_{n,d}$ is an open subscheme of $\mathbb{F}_{O_X(-n)^{\oplus d}/X/S}$. \Box

Now we look at $Y_{n,d}$ the open subscheme of $Z_{n,d}$ consisting of pairs whose map ϕ induces an isomorphism $\varphi : O_T^{\oplus d} \to p_* E(n)$. This is open because clearly $\operatorname{Coker}(\varphi) = 0$ is an open condition, so we may assume that φ is surjective. In this case $\operatorname{Ker}(\phi) = 0$ is an open condition. Thus the condition that φ is an isomorphism is an open condition.

Finally we consider the following map $\mathcal{U}_{n,d} \to \mathcal{B}GL_d$ which sends an object $E \in \mathcal{U}_{n,d}(T)$ to $p_*E(n)$. One checks readily that the following diagram

is Cartesian. In fact it almost follows from the definition of $Y_{n,d}$. The only thing which one has to take care of is that when $\varphi : O_T^{\oplus d} \to p_*E(n)$ is an isomorphism the corresponding map $\phi : O_{X_T}^{\oplus d} \twoheadrightarrow E(n)$ is surjective. This is due to the fact that the adjunction $p^*p_*E(n) \to E(n)$ is surjective by the construction of $\mathcal{U}_{n,d}$. Thus we obtain a smooth atlas for each $\mathcal{U}_{n,d}$ \Box

Proof of Theorem 3.1. It follows from 3.3 and 3.4 that Bun_r is an algebraic stack. Now applying 3.2 to $\mathcal{Y}_1 = \mathcal{B}G$ and $\mathcal{Y}_2 = \mathcal{B}GL_n$ we get a representable morphism $\text{Bun}_G \to \text{Bun}_n$. Thus the presentation of Bun_n translates to a presentation of Bun_G .

4. Bun_r is not of finite type

Proposition 4.1. Let X be the projective space over a field k. There is no surjection from a scheme of finite type to $\text{Bun}_r(X)$ for $r \ge 2$.

Proof. Let $f : Y \to \text{Bun}_r(X)$ be a surjective map with Y of finite type, and let y_n be the points corresponding to $O(n) \oplus O(-n) \oplus O^{\oplus r-2}$. The map f corresponds to a vector bundle E on X_Y . By the theorem of Serre there exists $n \gg 0$ such that $p^*p_*E(n) \to E(n)$ is surjective. Now left y_{n+1} to a 2-commutative diagram

The lift h_{n+1} tells us that *E* pullbacks to $O(n+1) \oplus O(-n-1) \oplus O^{\oplus r-2}$ and that

$$(O(n+1) \oplus O(-n-1) \oplus O^{\oplus r-2})(n) = O(2n+1) \oplus O(-1) \oplus O^{\oplus r-2}(n)$$

is generated by global sections. But in fact this is false.

BIBLIOGRAPHY

- [FGA] A. Grothendieck, Fondements de la Géométrie Algébrique. [Extraits du Séminaire Bourbaki, 1957-1962.]. Secrétariat mathématique, Paris, 1962.
- [EGA III-1] Alexander Grothendieck, Élements de Géométrie Algébrique. III. Étude cohomologique des faisceaux cohérents, I, Inst. Hautes Études Sci. Publ. Math. (1961), no. 11, 167;
- [EGA IV-3] A. Grothendieck, EGA IV: Étude locale des schéma et des morphismes de schémas, Première partie, Publications mathématiques de l'I.H.É.S., 20 (1966), 5-255.

Freie Universität Berlin, FB Mathematik und Informatik, Arnimallee 3, Zimmer 112a, 14195 Berlin, Deutschland

E-mail address: 1.zhang@fu-berlin.de